Other Minds: The Octopus, The Sea, And The Deep Origins Of Consciousness Download Pdf
Download File - https://byltly.com/2t85l1
Leading philosopher of science Peter Godfrey-Smith dons a wet suit and journeys into the depths of consciousness in his latest book Other Minds. Combining science and philosophy with first-hand accounts of the remarkable intelligence of the octopus, Godfrey-Smith explores how primitive organisms bobbing in the ocean began sending signals to each other and how these early forms of communication gave rise to the advanced nervous systems that permit cephalopods to change colors and human beings to speak. Follow along as Godfrey-Smith shares from his underwater adventures and sheds new light on the octopus brain, the human brain, and the evolution of consciousness.
Even though their relationship with consciousness is not straightforward, GDB and model-based learning can arguably indicate it, because they both require much more than reflexes and behaviour that has become automated through habit formation. The rationale is that conscious experience facilitates or enables GDB: in order to make temporally deep plans, subjects need a multimodal survey of their environmental and bodily situation [48]. Moreover, both GDB and model-based learning indicate the ability to have interests, to recognize the relevance of external inputs to fulfil those interests, and to act on the basis of those inputs for fulfilling interests. Even though these latter factors point more to motivation than consciousness, these are all ethically relevant abilities: when detectable in patients, they call for an ethical evaluation, which means that assessing whether they are present is ethically required when making decisions about care, treatment, diagnosis, and prognosis. In the case of DoCs, these abilities might be covert and flickering (i.e., not detectable at the bedside and inconsistent in time). This seems to be the case in patients with CMD (i.e., able to follow commands by medical doctors of imagining to move their body while their brains are monitored through recordings (e.g. fMRI and EEG), even if unresponsive at the bedside)[10]. Some promising results from which one may infer residual capacities for GDB and model-based learning in patients with DoCs emerged from the use of fMRI [49, 50]: some patients were able to modulate their brain activity by generating blood-oxygenation-level-dependent (BOLD) responses that were judged by the researchers to be induced voluntarily, reliably and repeatably. With specific reference to GDB, a test for prospective path planning has been done in healthy humans showing neural computations underlying our ability to make fast and robust multi-step inferences in the absence of prior learning, with a critical role played by the Hippocampus coupled with rostrodorsal medial prefrontal cortex (rd-mPFC)[51]. It will be both scientifically and ethically interesting, as a concrete way to advance the detection of residual consciousness, to expose CMD and other patients with DoCs to this task or a reduced version of it in order to get further information about their residual brain activity likely indicative of residual consciousness, especially if there is no overt behaviour. 2b1af7f3a8